首页 | 本学科首页   官方微博 | 高级检索  
     


The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow
Authors:M.J. Dunn   A.R. Masri   R.W. Bilger   R.S. Barlow  G.-H. Wang
Affiliation:aSchool of Aeronautical, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia;bSandia National Laboratories, Livermore, CA 94551-0969, USA
Abstract:Simultaneous line measurements of major species and temperature by the Raman–Rayleigh technique, combined with CO two-photon laser-induced fluorescence and crossed-plane OH planar laser-induced fluorescence have been applied to a series of flames in the Piloted Premixed Jet Burner (PPJB). The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a stoichiometric pilot and a large coflow of hot combustion products. Four flames with increasing jet velocities and constant jet equivalence ratios are examined in this paper. The characteristics of these four flames range from stable flame brushes with reaction zones that can be described as thin and “flamelet-like” to flames that have thickened reaction zones and exhibit extinction re-ignition behaviour. Radial profiles of the mean temperature are reported, indicating the mean thermal extent of the pilot and spatial location of the mean flame brush. Measurements of carbon monoxide (CO) and the hydroxyl radical (OH) reveal a gradual decrease in the conditional mean as the jet velocity is increased and the flame approaches extinction. Experimental results for the conditional mean temperature gradient show a progressive trend of reaction zone thickening with increasing jet velocities, indicating the increased interaction of turbulence with the reaction zone at higher turbulence levels. For the compositions examined, the product of CO and OH mole fractions ([CO][OH]) is shown to be a good qualitative indicator for the net rate of production of carbon dioxide. The axial variation of [CO][OH] is shown to correlate well with the mean chemi-luminescence of the flames including the extinction re-ignition regions. The experimental findings reported in this paper further support the hypothesis of an initial ignition region followed by extinction and re-ignition regions for certain PPJB flames.
Keywords:Turbulent premixed flames   Finite-rate chemistry   Distributed reaction regime   Flame front thickening   Reaction rate measurements
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号