首页 | 本学科首页   官方微博 | 高级检索  
     


Transitions and relaxations in aromatic polymers
Authors:Wolfgang Wrasidlo
Abstract:Transition and relaxation phenomena in 26 structurally related polyquinoxalines and other aromatic polymers were studied over a temperature range from 70 to 770°K by means of calorimetric, dilatometric, dynamic mechanical, and dielectric techniques. Differential thermal analysis and x-ray data showed these polymers to be essentially amorphous. The lack of crystallinity is attributed to geometric isomerism, resulting in conformational as well as configurational disorder. Calorimetric measurements gave discontinuities in heat capacities ranging from 12 to 54 cal/°C per mole of repeat-unit structures and provided unambiguous assignments of glass transition temperatures of these polymers. Depending upon structure, Tg varied from 489 to 668°K. Thermal expansion curves of annealed bulk polymer samples between 70 and 770°K exhibited only one discontinuity over the entire temperature range, namely at Tg, thus indicating the absence of any motion leading to transitions in the solid state of these polymers. Viscoelastic properties were obtained by means of torsional braid analysis and a longitudinal vibrational apparatus. In a typical case, the dynamic mechanical relaxation spectrum contained three loss maxima. A peak of low amplitude occurring at 483°K was attributed to impurity effects, resulting from endgroups and species of low molecular weight. The second and only major relaxation process occurred at 579°K, in the glass transition interval. A third, weak loss peak of unknown origin was found in the liquid state at 683°K. On the other hand, the dielectric loss curves of various polymers exhibited only one broad and strong absorption maximum at temperatures 30 to 100°K higher (depending upon a particular polymer) than equivalent major mechanical loss peaks. These differences are interpreted from a mechanistic point of view. Major mechanical relaxations occurring in the glass transition interval of these polymers are proposed to result from translational motions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号