首页 | 本学科首页   官方微博 | 高级检索  
     

基于QCL的红外吸收光谱技术的研究进展
引用本文:张怀林,吴涛,何兴道. 基于QCL的红外吸收光谱技术的研究进展[J]. 光谱学与光谱分析, 2019, 39(9): 2751-2757. DOI: 10.3964/j.issn.1000-0593(2019)09-2751-07
作者姓名:张怀林  吴涛  何兴道
作者单位:南昌航空大学测试与光电工程学院,江西 南昌 330063;南昌航空大学测试与光电工程学院,江西 南昌 330063;南昌航空大学测试与光电工程学院,江西 南昌 330063
基金项目:国家自然科学基金项目(41265011),江西省科技厅重点研发计划(20171BBG70003)资助
摘    要:量子级联激光器作为一种新型的单极型半导体激光器,其峰值发射波长处于中红外波段(2.5~25 μm),具有功率高、线宽窄、响应速率快等传统半导体激光器所没有的独特优势,且具有较高的探测灵敏度,非常适合中红外波段的气体分子的检测。可广泛应用于大气痕量气体、呼吸气体、燃烧气体、生化气体、机动车尾气、工业废气以及农药残留气体等低浓度气体的检测。因此,利用量子级联激光器对气体分子进行探测在非侵入式医学诊断、环境监测以及工农业生产等领域都具有十分重要的意义。自20世纪末量子级联激光器发明以来,室温激光器的性能得到了长足的进步,也出现了多种结构形式的量子级联激光器。这也使得量子级联激光器红外吸收光谱技术得到了很大的发展。事实上,很多光谱技术在量子级联激光器发明之前就已经得到了发展和应用,而利用量子级联激光器作为光源则在很大程度上扩展了可探测波段,也在一定程度上提高了探测极限。这其中就包括了直接吸收光谱技术、波长调制技术、腔衰荡光谱技术、腔增强吸收光谱技术以及光声光谱等。综述了国内外量子级联激光器进行红外吸收光谱技术的研究现状和发展趋势,分析了量子级联激光器红外吸收光谱技术在发展过程中所遇到的瓶颈以及后期得到的解决方案,比较详细地介绍了各种方法的原理、应用,并指出了在吸收光谱测量中的优缺点,同时对外场痕量气体探测作了简要总结。最后,对量子级联激光器红外吸收光谱技术在未来痕量气体探测上的应用和发展进行了展望,指出随着红外吸收光谱技术的快速发展,这些方法可以得到更有效的改进和发展,进而朝着高灵敏度、高集成度以及高时效方向发展。

关 键 词:量子级联激光器  红外吸收光谱技术  气体检测
收稿时间:2018-08-07

Progress of Measurement of Infrared Absorption Spectroscopy Based on QCL
ZHANG Huai-lin,WU Tao,HE Xing-dao. Progress of Measurement of Infrared Absorption Spectroscopy Based on QCL[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2751-2757. DOI: 10.3964/j.issn.1000-0593(2019)09-2751-07
Authors:ZHANG Huai-lin  WU Tao  HE Xing-dao
Affiliation:School of Measuring and Optical Engineering,Nanchang Hangkong University,Nanchang 330063,China
Abstract:As a new type of unipolar semiconductor laser, the quantum cascade laser (QCL) has a peak emission wavelength in the mid-infrared band (2.5~25 μm), and has the unique advantages that traditional semiconductor lasers do not have, such as high power, narrow linewidth and fast response rate. The infrared absorption spectroscopy of QCLs has high detection sensitivity and is very suitable for the detection of gas molecules with the characteristic spectrum in the mid-infrared band and can be widely used in the detection of low-concentration gas such as trace gas, respiratory gas, combustion gas, biochemical gas, automobile exhaust, industrial waste gas and pesticide residue gas. Therefore, the use of QCL to detect gas molecules is of great significance in non-invasive medical diagnosis, environmental monitoring, and industrial and agricultural production. Since the invention of QCL at the end of 20th century, the performance of room temperature laser has been greatly improved, and a variety of QCLs have appeared, which also makes the infrared absorption spectroscopy of QCLs greatly developed. In fact, many laser spectroscopies have been developed and applied before the invention of QCL. These include direct absorption spectroscopy (DAS), wavelength modulation spectroscopy (WMS), cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS) and photoacoustic spectroscopy (PAS) and other related technologies. While the use of QCL as the light source extends the detectable band to a large extent, and also increases the detection limit to some extent. This paper reviews the research status and development trends of infrared absorption spectroscopy of QCLs at home and abroad, and analyzes the bottlenecks encountered in the development process and the solutions obtained in the later stage. The principle and application of various methods are introduced in detail, and the advantages and disadvantages in the measurement are pointed out. At the same time, the field trace gas detection is briefly summarized. Finally, the application and development of infrared absorption spectroscopy of QCLs in the detection of trace gases in the future are prospected. It is pointed out that with the rapid development of infrared absorption spectroscopy, these methods can be more effectively improved and developed with high sensitivity, high integration and high timeliness.
Keywords:Quantum cascade laser  Infrared absorption spectroscopy  Gas detection  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号