首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic structure, energetics and geometric structure of carbon nanotubes: A density-functional study
Authors:Yoshio Akai  Susumu Saito
Institution:Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
Abstract:Based on the local density approximation (LDA) in the framework of the density-functional theory, we study the details of electronic structure, energetics and geometric structure of the chiral carbon nanotubes. For the electronic structure, we study all the chiral nanotubes with the diameters between 0.8 and 2.0 nm (154 nanotubes). This LDA result should give the important database to be compared with the experimental studies in the future. We plot the peak-to-peak energy separations of the density of states (DOS) as a function of the nanotube diameter (D). For the semiconducting nanotubes, we find the peak-to-peak separations can be classified into two types according to the chirality. This chirality dependence of the LDA result is opposite to that of the simple π tight-binding result. We also perform the geometry optimization of chiral carbon nanotubes with different chiral-angle series. From the total energy as a function of D, it is found that chiral nanotubes are less stable than zigzag nanotubes. We also find that the distribution of bond lengths depends on the chirality.
Keywords:Carbon nanotube  Density of states  Bond length  Bond angle  Density-functional theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号