首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and computational studies of alkali-metal coinage-metal clusters
Authors:Lin Ying-Chan  Sundholm Dage  Jusélius Jonas  Cui Li-Feng  Li Xi  Zhai Hua-Jin  Wang Lai-Sheng
Institution:Department of Chemistry, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland.
Abstract:Coinage and alkali metal mixed clusters, M4Na- (M = Cu, Au) have been investigated experimentally using photoelectron spectroscopy and computationally at correlated ab initio levels. The related Cu4Li-, Ag4Li-, Ag4Na-, and Au4Li- clusters as well as the neutral Cu4Li2 and Cu4Na2 clusters have also been studied computationally. The calculations show that the two lowest isomers of the negatively charged clusters include a pyramidal C4v structure and a planar C2v species. For Cu4Li- and Cu4Na-, the C4v structure is calculated at correlated ab initio level to be 30.9 and 16.9 kJ/mol below the planar C2v isomer, whereas the planar isomers of Au4Li- and Au4Na- are found to be 29.7 and 49.4 kJ/mol below the pyramidal ones. For Ag4Li- and Ag4Na-, the pyramidal isomers are the lowest ones. Comparison of the calculated and measured photoelectron spectra of Cu4Na- and Au4Na- shows that the pyramidal Cu4Na- cluster of C4v symmetry and the planar Au4Na- of C2v symmetry are detected experimentally. Calculations of the magnetically induced current density in Cu4Li- and Cu4Li2 using the Gauge-Including Magnetically Induced Current (GIMIC) method show that strong ring currents are sustained mainly by the highest-occupied molecular orbital primarily derived from the Cu 4s. The GIMIC calculations thus show that the Cu4(2-) ring is -aromatic and that the d orbitals do not play any significant role for the electron delocalization effects. The present study does not support the notion that the square-planar Cu4(2-) is the first example of d-orbital aromatic molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号