首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion theory of spin injection through resistive contacts
Authors:EI Rashba
Institution:(1) Department of Physics, The State University of New York at Buffalo, Buffalo, NY 14260, USA, US
Abstract:Insertion of a resistive contact between a ferromagnetic metal and a semiconductor microstructure is of critical importance for achieving efficient spin injection into a semiconductor. However, the equations of the diffusion theory are rather cumbersome for the junctions including such contacts. A technique based on deriving a system of self-consistent equations for the coefficients of spin injection, γ, through different contacts are developed. These equations are concise when written in the proper notations. Moreover, the resistance of a two-contact junction can be expressed in terms of γ's of both contacts. This equation makes calculating the spin valve effect straightforward, allows to find an explicit expression for the junction resistance and to prove that its nonequilibrium part is positive. Relation of these parameters to different phenomena like spin-e.m.f. and the contact transients is established. Comparative effect of the Coulomb screening on different parameters is clarified. It is also shown that the spin non-conservation in a contact can have a dramatic effect on the non-equilibrium resistance of the junction. Received 2 May 2002 / Received in final form 26 July 2002 Published online 15 October 2002 RID="a" ID="a"Also at the Department of Physics, MIT, Cambridge, Massachusetts 02139, USA e-mail: erashba@mailaps.org
Keywords:PACS  72  25  Hg Electrical injection of spin polarized carriers –  72  25  Mk Spin transport through interfaces
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号