首页 | 本学科首页   官方微博 | 高级检索  
     检索      

含弱约束端面短管道油气爆炸特性实验研究
引用本文:杜扬,王世茂,袁广强,齐圣,王波,李国庆,李阳超.含弱约束端面短管道油气爆炸特性实验研究[J].爆炸与冲击,2018,38(2):465-472.
作者姓名:杜扬  王世茂  袁广强  齐圣  王波  李国庆  李阳超
作者单位:中国人民解放军后勤工程学院军事供油工程系,重庆,401311;中国人民解放军后勤工程学院军事供油工程系,重庆,401311;中国人民解放军后勤工程学院军事供油工程系,重庆,401311;中国人民解放军后勤工程学院军事供油工程系,重庆,401311;中国人民解放军后勤工程学院军事供油工程系,重庆,401311;中国人民解放军后勤工程学院军事供油工程系,重庆,401311;中国人民解放军后勤工程学院军事供油工程系,重庆,401311
基金项目:国家自然科学基金项目51276195国家自然科学基金项目51704301重庆市研究生科研创新项目CYB17150
摘    要:构建了长径比为4的含弱约束端面的短管道实验系统,对短管道油气爆炸特性进行了实验研究,得到油气爆炸压力和火焰的变化规律。实验结果表明:(1)受破膜、泄流、外部爆炸等因素的影响,含弱约束端面短管道油气爆炸具有多个超压峰值,并产生Helmholtz振荡;(2)弱约束端面对管道内外爆炸超压均具有增强作用,内部最大超压为24.23 kPa,外部最大超压为5.45 kPa,分别为无约束条件下的4.9和2.7倍;(3)火焰变化过程可划分为“层流燃烧-突变加速-外部爆炸-衰弱熄灭”4个阶段;由于湍流、界面不稳定、斜压效应等因素的影响,火焰在突变加速和外部爆炸两个阶段会发生剧烈的拉伸褶皱和卷曲变形,形成Tulip火焰和蘑菇云状火焰。(4)在层流燃烧阶段,弱约束端面对火焰速度有减弱作用,此阶段最大火焰速度为3.5 m/s,相比于无约束时减弱了41.3%;而在突变加速和外部爆炸阶段,弱约束端面破坏产生的强泄流对火焰传播速度有增强作用,此阶段最大火焰速度为80.2 m/s,相比于无约束时增强了106.2%。(5)不同初始油气浓度条件下火焰发展模式具有显著差异,在低浓度和中浓度条件下火焰能够冲出弱约束端面形成外部火球,而在高浓度条件下,火焰无法冲出管道。

关 键 词:油气  短管道  弱约束  超压  火焰传播速度
收稿时间:2015-12-25

Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end
Institution:Department of Petroleum Supply Engineering, Logistic Engineering University of PLA, Chongqing 401311, China
Abstract:In this paper, we studied the characteristics of the fuel-air mixture explosion using an experiment system built in a short pipe containing a weakly confined face at the end, with the following results achieved. (1) Multiple pressure peaks were observed due to the rupture, discharge, external explosion, accompanied with the Helmholtz oscillation. (2) The constraint surface produced a strengthening effect on the explosion overpressure, the maximum internal overpressure being 24.23 kPa and the maximum external overpressure being 5.45 kPa, respectively 4.9 and 2.7 times that of the pressure as compared in an unconstrained structure. (3) The morphological changes of the flame can be divided into four stages, those of the laminar combustion, the mutation and acceleration, the external explosion, and the extinction. Due to the influence of such factors as turbulence, interface instability and baroclinic effects, the flame shape was folded and crimped, forming a tulip during the mutation and acceleration stage and a sphere during the external explosion stage. (4) During the laminar combustion stage, the weakly confined face had a lessening effect on the flame speed, with 3.5 m/s as its maximum, which is reduced by 41.3%. In the states of mutation-acceleration and external explosion, the destruction of the confined surface had a strengthening effect on the flame speed, with 80.2 m/s as its maximum, which is enhanced by 106.2%. (5) The flame development made a significant difference at different concentrations. The flame can break through the weak confinement and form an external explosion at low and medium concentration, while at high concentration, the flame was unable to do so.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《爆炸与冲击》浏览原始摘要信息
点击此处可从《爆炸与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号