首页 | 本学科首页   官方微博 | 高级检索  
     


Analytical study of four-wave mixing with large atomic coherence
Authors:E.A. Korsunsky  T. Halfmann  J.P. Marangos  K. Bergmann
Affiliation:1.Fachbereich Physik, Universit?t Kaiserslautern, 67663 Kaiserslautern, Germany,DE;2.Physics Department, Blackett Laboratory, Imperial College, London SW7 2BZ, UK,GB
Abstract:Four-wave mixing in resonant atomic vapors based on maximum coherence induced by Stark-chirped rapid adiabatic passage (SCRAP) is investigated theoretically. We show the advantages of a coupling scheme involving maximum coherence and demonstrate how a large atomic coherence between a ground and an highly excited state can be prepared by SCRAP. Full analytic solutions of the field propagation problem taking into account pump field depletion are derived. The solutions are obtained with the help of an Hamiltonian approach which in the adiabatic limit permits to reduce the full set of Maxwell-Bloch equations to simple canonical equations of Hamiltonian mechanics for the field variables. It is found that the conversion efficiency reached is largely enhanced if the phase mismatch induced by linear refraction is compensated. A detailed analysis of the phase matching conditions shows, however, that the phase mismatch contribution from the Kerr effect cannot be compensated simultaneously with linear refraction contribution. Therefore, the conversion efficiency in a coupling scheme involving maximum coherence prepared by SCRAP is high, but not equal to unity. Received 16 August 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: korsunsky@physik.uni-kl.de
Keywords:PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light –   42.65.Ky Harmonic generation, frequency conversion –   32.80.Qk Coherent control of atomic interactions with photons
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号