首页 | 本学科首页   官方微博 | 高级检索  
     


Alkanephosphonates on hafnium-modified gold: a new class of self-assembled organic monolayers
Authors:Jespersen Michael L  Inman Christina E  Kearns Gregory J  Foster Evan W  Hutchison James E
Affiliation:Department of Chemistry and Materials Science Institute, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA.
Abstract:A new method for assembling organic monolayers on gold is reported that employs hafnium ions as linkers between a phosphonate headgroup and the gold surface. Monolayers of octadecylphosphonic acid (ODPA) formed on gold substrates that had been pretreated with hafnium oxychloride are representative of this new class of organic thin films. The monolayers are dense enough to completely block assembly of alkanethiols and resist displacement by alkanethiols. The composition and structure of the monolayers were investigated by contact angle goniometry, XPS, PM-IRRAS, and TOF-SIMS. From these studies, it was determined that this assembly strategy leads to the formation of ODPA monolayers similar in quality to those typically formed on metal oxide substrates. The assembly method allows for the ready generation of patterned surfaces that can be easily prepared by first patterning hafnium on the gold surface followed by alkanephosphonate assembly. Using the bifunctional (thiol-phosphonate) 2-mercaptoethylphosphonic acid (2-MEPA), we show that this new assembly chemistry is compatible with gold-thiol chemistry and use TOF-SIMS to show that the molecule attaches through the phosphonate functionality in the patterned region and through the thiol in the bare gold regions. These results demonstrate the possibility of functionalizing metal substrates with monolayers typically formed on metal oxide surfaces and show that hafnium-gold chemistry is complementary and orthogonal to well-established gold-thiol assembly strategies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号