首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials
Authors:Jorge A. Gó  mez,Hé  ctor Lorduy G.
Affiliation:
  • a Grupo de Óptica y Espectroscopía (GOE), Centro de Ciencia Básica, Universidad Pontificia Bolivariana (Colombia), A.A. 56006, Medellín, Colombia
  • b Grupo de Física Básica y Aplicada, Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Colombia
  • Abstract:In this work, the dependence on the speckle size in the performance of a micro displacement sensor based on fiber specklegrams stored in a photorefractive BSO (Bi12SiO20) crystal is experimentally demonstrated. In our experimental setup, a plastic optical fiber (POF) was used to generate a subjective speckle pattern which was recorded in the crystal by using a four-wave mixing arrangement in transmission geometry. The speckle size was controlled by modifying the diameter of a pupil aperture adjacent to a lens producing the image of the speckle. The signal speckle beam was mixed into the crystal with two counter propagating pump beams to generate a fourth beam which is proportional to the conjugate of the original speckle beam. Real time fringe patterns were obtained at the output of the system by producing micro displacements of the fiber output end. Increases of the phase conjugation reflectivity and the visibility of the fringe patterns were appreciated when the speckle length was increased by decreasing the pupil aperture diameter. This behavior allowed recovering the autocorrelation functions of fringe patterns associated to micro displacements that initially led to decorrelation, and therefore, to improve the dynamic range of the metrological system. Until the best of our knowledge this is the first report about the influence of the speckle size on fiber specklegrams sensors recorded on photorefractive materials by four-wave mixing.
    Keywords:Fiber optics sensors   Fiber specklegrams   Volume grating   Photorefractive   Four-wave mixing
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号