首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element analysis in combustion phenomena
Authors:T. J. Chung  Y. M. Kim  J. L. Sohn
Abstract:This paper is concerned with the exposition of finite element applications to combustion problems. The subject of computational fluid dynamics, including combustion calculations, has long been dominated by finite differences. Recently, however, the finite element method has emerged as a potential candidate for computational modelling in fluid mechanics. It is well known that reactive fluids with combustion present additional complications because of disparity in reaction rates commonly referred to as ‘stiff’. The present paper reviews basic questions arising from combustion problems in applications of finite element techniques to the solution of problems associated with chemical kinetics, diffusion, waves, convection, etc. Finally, an example of a hydrogen-oxygen reaction is presented for practical applications. Extension to the finite element modelling of turbulence, sprays, boundary layers, shock waves, etc. in combustion must await significant developments of numerical strategies associated with a more complete understanding of physical phenomena and chemical kinetics.
Keywords:Combustion Numerical Modelling  Finite Elements  Stiff Equations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号