XGBoost在气体红外光谱识别中的应用 |
| |
摘 要: | 为解决气体红外光谱识别问题,引入提升算法中较新的研究成果——极端梯度提升(XGBoost)算法。选用实测的三氯甲烷、对二甲苯、四氯乙烯气体的红外光谱数据进行实验。首先在对原始数据进行预处理后,通过特征工程提取光谱特征,生成特征向量;然后建立XGBoost模型,并对模型参数进行调优;最后基于分类准确率指标,将所提模型与随机森林(RF)、支持向量机(SVM)、前馈神经网络(FNN)、卷积神经网络(CNN)模型进行对比。实验结果表明,XGBoost在气体红外光谱识别领域有着广阔的应用前景。
|
本文献已被 CNKI 等数据库收录! |
|