Abstract: | The problem of subsonic, transonic, and supersonic separation flow of water past a circular cone of finite length is solved. The water is assumed to be an ideal compressible fluid. A steady flow picture is obtained in a process of stabilization with respect to the time by means of a two-dimensional finite-difference scheme [1]. The dependence of the drag coefficient on the Mach number of the oncoming flow, the distribution of the pressure over the conical surface, and the shape of the free surface formed behind the cone are investigated. |