首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A piezoelectric method for monitoring formaldehyde induced crosslink formation between poly-lysine and poly-deoxyguanosine
Authors:Bunde R L  Jarvi E J  Rosentreter J J
Institution:Department of Chemistry, Idaho State University, Pocatello, ID, 83209, USA; Department of Pharmaceutical Sciences, Idaho State University, Pocatello, ID, 83209, USA.
Abstract:To date, no experimental technique has been used to monitor DNA-protein crosslink formation in real-time. Real-time data is important for understanding the underlying chemical mechanisms associated with this reaction process. Here, the novel adaptation of existing piezoelectric quartz crystal (PQC) or quartz crystal microbalance (QCM) technology was used to monitor, in real-time, the formation of a crosslink bond induced by formaldehyde between lysine and guanine. Previous results showed complexes of lysine and guanine constitute a major portion of the DNA-protein crosslinks formed. Thus, poly-lysine(5) and poly-deoxyguanosine(11) were used as a model system to develop this detection method. Poly-lysine(5) was immobilized on QCM electrode surfaces by covalent attachment through polyethylenimine (PEI). Immobilization was confirmed by the decrease in dry QCM frequency; data consistency suggested uniform coatings were produced. The QCM sensor was configured within a thermostatic environmental chamber. The system was calibrated and baseline responses to variations in the analyte solution matrix were identified. QCMs with immobilized poly-lysine(5) were placed in contact with formaldehyde and poly-deoxyguanosine(11), and crosslink formation was monitored in real-time. Crosslink formation was verified through evaluation of controls. Control assays indicated some of the frequency signal was as aresult of non-specific association. Further assays were conducted after saturation of non-specific binding. This real-time data represents a significant advancement in the state of knowledge of the crosslinking process and provides the experimental foundation for further QCM crosslink investigations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号