首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative molecular dynamics study of vapor-exposed basal, prismatic, and pyramidal surfaces of ice
Authors:Pfalzgraff William  Neshyba Steven  Roeselova Martina
Institution:University of Puget Sound, Tacoma, Washington 98416, USA.
Abstract:We present the results of molecular dynamics simulations in which ice I(h) slabs with free basal, prismatic, 28° pyramidal, and 14° pyramidal facets are exposed to vapor. All simulations were carried out at 250 K using a six-site intermolecular potential. Characteristics common to all facets include spontaneous development of a quasi-liquid layer (QLL) within ~10 ns and QLL stratification into outer (ε(1)) and inner (ε(2)) sublayers having on average two and three hydrogen bonds, respectively. Vapor pressure, based on the rate of escape of molecules from the QLL to the vapor phase, is found to be greatest for the 14° pyramidal and basal facets (~230 Pa), while significantly lower values are obtained for the prismatic and 28° pyramidal facets (~200 Pa). The geometric thickness of the QLL also varies between facets, with the 14° pyramidal having the greatest thickness. The free prismatic and pyramidal facets exhibit significant anisotropic diffusivity, in-plane motion being faster in the trans-prismatic direction than in the basal-to-basal direction. The in-plane diffusion length is greatest for the 28° pyramidal facet and smallest for the prismatic facet. This diversity of facet-specific properties provides a rich set of possibilities for mechanisms of ice crystal growth and ablation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号