Institute of Applied Mechanics, National Taiwan University, No. 1, Sect. 4, Roosevelt Road, Taipei 106, Taiwan
Abstract:
The problem of a semi-infinite crack subjected to an incident stress wave in a general anisotropic elastic solid is considered. The plane wave impinges the crack at a general oblique angle and is of any of the three types propagating in that direction. A related problem of a semi-infinite crack loaded by a pair of concentrated forces moving along the crack surfaces is also considered. In contrast to the conventional approach by Laplace transforms, a Stroh-like formalism is employed to construct the solution directly in the time domain. The solution is shown to depend on a Wiener–Hopf factorization of a symmetric matrix. Closed-form solution of the stress intensity factors is derived. A remarkably simple expression for the energy release rate is obtained for normal incidence.