首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal processes in the systems with Li-battery cathode materials and LiPF6 -based organic solutions
Authors:Ortal Haik  Francis Susai Amalraj  Daniel Hirshberg  Luba Burlaka  Michael Talianker  Boris Markovsky  Ella Zinigrad  Doron Aurbach  Jordan K Lampert  Ji-Yong Shin  Martin Schulz-Dobrick  Arnd Garsuch
Institution:1. Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
2. Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
3. BASF SE, GCN/E, Ludwigshafen am Rhein, 67056, Germany
Abstract:Thermodynamic instability of positive electrodes (cathodes) in Li-ion batteries in humid air and battery solutions results in capacity fading and batteries degradation, especially at elevated temperatures. In this work, we studied thermal interactions between cathode materials Li2MnO3, xLi2MnO3 .(1???x)Li(MnNiCo)O2,LiNi0.33Mn0.33Co0.33O2, LiNi0.4Mn0.4Co0.2O2, LiNi0.8Co0.15Al0.05O2 LiMn1.5Ni0.5O4, LiMn(or Fe)PO4, and battery solutions containing ethylene carbonate (EC) or propylene carbonate (PC), dimethyl carbonate (DMC) or ethylmethyl carbonate (EMC) and LiPF6 salt in the temperature range of 40–400 °C. It was found that these materials are stable chemically and well performing in LiPF6-based solutions up to 60 °C. The thermal decomposition of the electrolyte solutions starts >180 °C. The macro-structural transformations of cathode materials upon exothermic reactions were studied by transmission electron microscopy (TEM), X-ray difraction (XRD) and Raman spectroscopy. Differential scanning calorimetry (DSC) studies have shown that the exothermic reactions in the temperature range of 60–140 °C lead to partial decomposition of both the cathode material and electrolyte solution. The systems thus formed consisted of partially decomposed solutions and partially chemically delithiated cathode materials covered by reactions products. Thermal reactions terminate and this system reaches equilibrium at about 120 °C. It remains stable up to the beginning of the solution decomposition at about 180 °C. The increased content of surface Li2CO3 is found to significantly affect the thermal processes at high temperature range due to extensive exothermic decomposition at low temperatures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号