首页 | 本学科首页   官方微博 | 高级检索  
     检索      

钯铂核壳纳米催化剂颗粒中的原子扩散
引用本文:张焰峰,朱尚乾,张莉莉,苏东,邵敏华.钯铂核壳纳米催化剂颗粒中的原子扩散[J].催化学报,2020(5):807-812.
作者姓名:张焰峰  朱尚乾  张莉莉  苏东  邵敏华
作者单位:江苏奥新新能源汽车有限公司;香港科技大学化学与生物工程学系;上海智能新能源汽车科创功能平台有限公司;淮阴师范大学低维材料化学江苏重点实验室;布鲁克海文国家实验室功能纳米材料中心
基金项目:国家重点研发计划(2017YFB0102900);香港特别行政区研究资助局(26206115,16304117);广东省科技发展专项基金(香港科技合作资助计划(201604030012,201704030065)).
摘    要:铂原子单层的核壳结构催化剂因其高效的铂原子利用率和优异铂质量活性而广泛应用于燃料电池领域.在该系列材料中,钯@铂核壳催化剂具有更优于纯铂的氧还原(ORR)催化活性,因而拥有较好的应用前景.但由于钯原子在热力学上更倾向于富集到材料表面,钯@铂核壳催化剂的催化稳定性及原子扩散的途径需要更深入的研究.本文探究了热处理条件对钯@铂核壳结构稳定性的破坏,并确定了原子扩散对催化活性的影响.原位扫描透射电子显微镜-电子能量损失谱(STEM-EELS)证明了在250 oC的氩气氛围中,钯@铂纳米颗粒中原本清晰可见的1–2原子铂壳层已经消失,并伴随着颗粒表面钯铂合金化的形成.因钯金属可以吸收氢气而导致晶格间距的展宽,钯@铂核壳结构的破坏也可以通过氢气氛围中的原位X射线衍射谱中(111)衍射峰的展宽和位移进行判断.对钯@铂核壳纳米催化剂进行一系列温度的热处理结果显示,核壳结构的破坏在200 oC左右开始,并于200–300 oC之间急剧发生.一氧化碳电化学氧化脱附实验表明,热处理之后的核壳催化剂表面的一氧化碳氧化峰位置发生了明显的正移,也证明了热处理之后催化剂表面电子结构的变化.核壳结构改变对催化活性的影响也通过旋转圆盘电极进行了测量.相比于未经处理的样品, 200 oC处理之后的钯@铂核壳催化剂在0.9 V电位处的质量活性损失了约37%.进一步提高热处理温度至300 oC之后,钯@铂核壳催化剂的质量活性只有初始状态的44%.本文揭示核壳结构中因热处理而导致的原子扩散现象,并为燃料电池中核壳催化剂的应用及膜电极的制备工艺条件提供了参考.

关 键 词:核壳催化(单层)剂  质子交换膜燃料电池  稳定性  原子扩散  电催化剂

Interatomic diffusion in Pd-Pt core-shell nanoparticles
Yanfeng Zhang,Shangqian Zhu,Lili Zhang,Dong Su,Minhua Shao.Interatomic diffusion in Pd-Pt core-shell nanoparticles[J].Chinese Journal of Catalysis,2020(5):807-812.
Authors:Yanfeng Zhang  Shangqian Zhu  Lili Zhang  Dong Su  Minhua Shao
Institution:(Jiangsu Aoxin NEV Co.,Ltd,Yancheng,Jiangsu,China;Department of Chemical and Biological Engineering,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong,China;Shanghai AI NEV Innovative Platform Co.,Ltd,Shanghai,China;Jiangsu Key Laboratory for Chemistry of Low-Dimension Materials,Huaiyin Normal University,Huaian 223300,Jiangsu,China;Center for Functional Nanomaterials,Brookhaven National Laboratory,Upton,NY 11973,USA)
Abstract:Pt monolayer-based core-shell catalysts have garnered significant interest for the application of low temperature fuel cell technology as their use may enable a decreased loading of Pt while still providing sufficient current density to meet volumetric requirements. One promising candidate in this class of materials is a Pd@Pt core-shell catalyst, which shows enhanced activity toward oxygen reduction reaction(ORR). One concern with the use of Pd@Pt, however, is the durability of the core-shell structure as Pd atoms are thermodynamically favored to migrate to the surface. The pathway of the migration has not been systematically studied. The current study explores the stability of this structure to thermal annealing and probes the effect of this heat treatment on the catalyst surface structure and its oxygen reduction activity. It was found that surface alloying between Pd and Pt occurs at temperatures as low as 200 °C, and significantly alters the structure and ORR catalytic activity in the range of 200–300 °C. Our results shed lights on the thermal induced interatomic diffusion in all core-shell and thin film structures.
Keywords:Monolayer  Proton exchange membrane fuel cell  Stability  Interatomic-diffusion  Electrocatalysis
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号