首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scattering of a longitudinal wave by a circular crack in a fluid-saturated porous medium
Institution:Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia;CSIRO Division of Petroleum Resources, ARRC, 26 Dick Perry Avenue, Kensington, Perth, WA 6151, Australia
Abstract:Physical properties of many natural and man-made materials can be modelled using the concept of poroelasticity. Some porous materials, in addition to the network of pores, contain larger inhomogeneities such as inclusions, cavities, fractures or cracks. A common method of detecting such inhomogeneities is based on the use of elastic wave scattering. We consider interaction of a normally incident time-harmonic longitudinal plane wave with a circular crack imbedded in a porous medium governed by Biot’s equations of dynamic poroelasticity. The problem is formulated in cylindrical co-ordinates as a system of dual integral equations for the Hankel transform of the wave field, which is then reduced to a single Fredholm integral equation of the second kind. It is found that the scattering that takes place is predominantly due to wave induced fluid flow between the pores and the crack. The scattering magnitude depends on the size of the crack relative to the slow wave wavelength and has it’s maximum value when they are of the same order.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号