首页 | 本学科首页   官方微博 | 高级检索  
     检索      

柱前衍生毛细管电泳-电致化学发光法测定日用化妆品中的氨甲环酸含量
引用本文:王荣,周敏,王苏霞,廖原,樊雪,马永钧.柱前衍生毛细管电泳-电致化学发光法测定日用化妆品中的氨甲环酸含量[J].色谱,2020,38(8):968-974.
作者姓名:王荣  周敏  王苏霞  廖原  樊雪  马永钧
作者单位:西北师范大学化学化工学院, 甘肃省生物电化学与环境分析重点实验室, 甘肃 兰州 730070
基金项目:国家自然科学基金地区基金项目(21862019);国家自然科学基金地区基金项目(21767026)
摘    要:将氨甲环酸进行N-甲基化衍生反应后,其衍生产物能与联吡啶钌电致化学发光试剂产生强的共发光信号,据此建立了毛细管电泳-电致化学发光法高选择性测定日用化妆品试样中氨甲环酸含量的新方法。实验中发现,添加一种Mg2+-海藻糖-SiO2-3三元缔合物凝胶至背景电解液中,可极大地改善电泳分离效能。在优化的分析条件下,氨甲环酸和内标物肌氨酸衍生产物的电泳峰可在500 s内达到完全分离,且此两个电泳峰的强度比值与氨甲环酸的初始浓度在10~750μmol/L的范围内呈良好的线性关系(相关系数r2=0.9993),检出限为3.6μmol/L(S/N=3)。采用内标法对3种市售牙膏膏体和2种面膜护理液中的氨甲环酸进行了定量测定,测得这些试样中氨甲环酸含量的均值分别为4.05、0.24、6.06 mg/g和51.3、7.98 mg/mL,加标回收率在92.5%~104.0%内,结果令人满意。

关 键 词:毛细管电泳  电致化学发光  柱前衍生反应  氨甲环酸  电泳分离添加剂
收稿时间:2019-12-01

Determination of tranexamic acid in essential cosmetics by pre-column derivatization capillary electrophoresis coupled with electrogenerated chemiluminescence detection
WANG Rong,ZHOU Min,WANG Suxia,LIAO Yuan,FAN Xue,MA Yongjun.Determination of tranexamic acid in essential cosmetics by pre-column derivatization capillary electrophoresis coupled with electrogenerated chemiluminescence detection[J].Chinese Journal of Chromatography,2020,38(8):968-974.
Authors:WANG Rong  ZHOU Min  WANG Suxia  LIAO Yuan  FAN Xue  MA Yongjun
Institution:College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Lanzhou 730070, China
Abstract:N-Methylation of tranexamic acid yields an unique derivative, which generates strong co-luminescence signals in the presence of an electrochemiluminescence reagent such as Ru(bpy)32+. Using this principle, we established a highly selective analytical method based on pre-column derivatization capillary electrophoresis coupled with electrogenerated chemiluminescence detection for determining the tranexamic acid content in essential cosmetics. The addition of a ternary ionic association gel, Mg2+-trehalose-SiO32-, in the components of background electrolyte greatly improved the electrophoretic separation efficiency. Under the optimized assay conditions, two electrophoretic peaks attributed to the derivatives of tranexamic acid and its internal standard (sarcosine) were completely separated in 500 s, and their electrophoretic peak intensities ratio showed a good linear relationship with the initial concentration of tranexamic acid in the range of 10-750 μmol/L (correlation coefficient r2=0.9993). The limit of detection was estimated to be 3.6 μmol/L (S/N=3). Moreover, the internal standard method was further applied to the quantitative determination of tranexamic acid content in three kinds of toothpaste and two kinds of nutrient solutions in facial masks. The results showed that the average tranexamic acid content in three toothpaste samples was 4.05, 0.24, and 6.06 mg/g, while that in two facial masks was 51.3 and 7.98 mg/mL. The recoveries for the above-mentioned samples were within the range 92.5% to 104.0%, implying satisfactory results.
Keywords:capillary electrophoresis (CE)  electrogenerated chemiluminescence (ECL)  pre-column derivatization  tranexamic acid (TA)  electrophoretic separation additive  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《色谱》浏览原始摘要信息
点击此处可从《色谱》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号