首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new theory of elementary matter
Authors:Sachs  Mendel
Institution:(1) Department of Physics, State University of New York, Buffalo, N.Y.
Abstract:This is the first of a series of articles that reviews and expands upon a new theory of elementary matter. This paper presents an exposition of the philosophical approach and its general implications. The ensuing explicit form of the mathematical expression of the theory and several applications in the atomic and elementary particle domains will be developed in the succeeding parts of this series.The theory is based on three axioms: the principle of general relativity, a generalized Mach principle, and a correspondence principle. The approach is basically a deterministic, relativistic field theory which fully incorporates the idea that any realistic physical system is in facta closed system, without separable parts. It is shown that the most primitive mathematical expression of this theory, following as anecessary consequence of its axioms, is in terms of a set of coupled nonlinear spinor field equations. Nevertheless, the exact formalism is constructed to asymptotically approach the quantum mechanical formalism for a many-particle system, in the limit of sufficiently small energy-momentum transfer among the components of the considered closed system. Thus, all of the mathematical predictions of nonrelativistic quantum mechanics are contained in this theory, as a mathematical approximation. However, predictions follow from the exact form of this theory (where energy-momentum transfer can be arbitrarily large) that are not contained in the quantum theory.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号