首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion of water in clays on the microscopic scale: modeling and experiment
Authors:Malikova N  Cadène A  Marry V  Dubois E  Turq P
Institution:Laboratoire Liquides Ioniques et Interfaces Chargées, boite postale 51, Université P. et M. Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France. malikova@ccr.jussieu.fr
Abstract:Diffusion of water in montmorillonite clays at low hydration has been studied on the microscopic scale by two quasi-elastic neutron scattering techniques, neutron spin-echo (NSE) and time-of-flight (TOF), and by classical microscopic simulation. Experiment and simulation are compared both directly on the level of intermediate scattering functions, I(Q, t), and indirectly on the level of relaxation times after a model of atomic motion is applied. Regarding the dynamics of water in Na- and Cs-monohydrated montmorillonite samples, the simulation and NSE results show a very good agreement, both indicating diffusion coefficients of the order of (1-3) x 10(-10) m(2) s(-1). The TOF technique significantly underestimates water relaxation times (therefore overestimates water dynamics), by a factor of up to 3 and 7 in the two systems, respectively, primarily due to insufficiently long correlation times being probed. In the case of the Na-bihydrated system, the TOF results are in closer agreement with the other two techniques (the techniques differ by a factor of 2-3 at most), giving diffusion coefficients of (5-10) x 10(-10) m(2) s(-1). Attention has been also paid to the elastic incoherent structure factor, EISF(Q). Simulation has played a key role in understanding the various contributions to EISF(Q) in clay systems and in clearly distinguishing the signatures of "apparent" and true confinement. Indirectly, simulation highlights the difficulty in interpreting the EISF(Q) signal from powder clay samples used in experiments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号