首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In Silico Drug Repurposing Approach: Investigation of Mycobacterium tuberculosis FadD32 Targeted by FDA-Approved Drugs
Authors:Nolwazi Thobeka Portia Ngidi  Kgothatso Eugene Machaba  Ndumiso Nhlakanipho Mhlongo
Institution:School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (N.T.P.N.); (K.E.M.)
Abstract:Background: Despite the enormous efforts made towards combating tuberculosis (TB), the disease remains a major global threat. Hence, new drugs with novel mechanisms against TB are urgently needed. Fatty acid degradation protein D32 (FadD32) has been identified as a promising drug target against TB, the protein is required for the biosynthesis of mycolic acids, hence, essential for the growth and multiplication of the mycobacterium. However, the FadD32 mechanism upon the binding of FDA-approved drugs is not well established. Herein, we applied virtual screening (VS), molecular docking, and molecular dynamic (MD) simulation to identify potential FDA-approved drugs against FadD32. Methodology/Results: VS technique was found promising to identify four FDA-approved drugs (accolate, sorafenib, mefloquine, and loperamide) with higher molecular docking scores, ranging from −8.0 to −10.0 kcal/mol. Post-MD analysis showed that the accolate hit displayed the highest total binding energy of −45.13 kcal/mol. Results also showed that the accolate hit formed more interactions with FadD32 active site residues and all active site residues displayed an increase in total binding contribution. RMSD, RMSF, Rg, and DCCM analysis further supported that the presence of accolate exhibited more structural stability, lower bimolecular flexibility, and more compactness into the FadD32 protein. Conclusions: Our study revealed accolate as the best potential drug against FadD32, hence a prospective anti-TB drug in TB therapy. In addition, we believe that the approach presented in the current study will serve as a cornerstone to identifying new potential inhibitors against a wide range of biological targets.
Keywords:Mtb-FadD32  drug repurposing  MD simulations  post-MD analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号