首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solubilization of 1-butanol in a sodium dodecyl sulfate-poly(ethylene oxide) system by NMR and conductivity at 298.1 and 283.1?K
Authors:M I Gjerde  W Nerdal  H Høiland
Institution:(1) Department of Chemistry University of Bergen Allegaten 41 N-5007 Bergen Norway E-mail: willy.nerdal@kj.uib.no, NO
Abstract: The effects of adding 0.1 molal 1-butanol to the aqueous SDS system at 298.1 K and the aqueous PEO–SDS system at 298.1 and 283.1 K have been studied. NMR NOESY experiments on the PEO– SDS–1-butanol system in D2O were obtained. NMR self-diffusion experiments and measurements of NMR chemical shifts and specific conductivity were carried out on the samples, i.e. on samples with PEO and without PEO. The addition of 1-butanol to an aqueous SDS–PEO system decreases the critical aggregation concentration (c.a.c). Determination of the second critical concentration (c 2) depends on the method of measurements, i.e. the molecular species monitored. Conductivity measurements will give c 2 as the SDS concentration where free micelles (micelles not bound to the polymer) are formed. PEO self-diffusion measurements, on the other hand, determine c 2 as the SDS concentration where the polymer is saturated with SDS. Both the c.a.c and the c 2 decrease upon 1-butanol addition. However, the c 2 value exhibits a larger decrease than the c.a.c value. Thus, the amount of polymer bound surfactant molecules decreases upon addition of 1-butanol. Micellar solubilization of 1-butanol starts at c.a.c., but the solubilization capacity is low until the surfactant concentration reaches c 2, where the increase in solubilization is significant. Thus, solubilization data can be used to detect c 2, the concentration where free micelles form. Received: 21 July 1997 Accepted: 9 February 1998
Keywords:  1-Butanol  sodium dodecyl sulfate  poly(ethylene oxide)  solubilization  critical aggregation concentration  saturation of the polymer  NMR NOESY  NMR self-diffusion  conductivity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号