首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The impact of alkali elements on the degradation of CIGS solar cells
Authors:Mirjam Theelen  Vincent Hans  Nicolas Barreau  Henk Steijvers  Zeger Vroon  Miro Zeman
Abstract:Unencapsulated CIGS solar cells with high and low contents of sodium (Na) and potassium (K) were simultaneously exposed to damp heat and illumination. The solar cells with a high alkali (Na, K) content exhibited higher initial conversion efficiencies, but degraded severely within 100 h, while the alkali poor samples kept relatively stable performance under damp heat and illumination. The degradation of the samples with a high alkali content resulted in the formation of sodium rich spots on the top ZnO:Al surface of the samples. This is likely caused by light‐induced Na+ migration via the grain boundaries in the absorber to the depletion region, where the Na+ accumulated. This allowed subsequent Na+ transport through the depletion region due to the lowering of the internal electric field caused both by the Na+ accumulation and illumination. The migration resulted in the formation of shunt paths, which reduced the shunt resistance and open circuit voltage. Furthermore, ingression of water into the ZnO:Al is expected to be responsible for a slow but steady increase in series resistance for both high and low alkali solar cells. Additionally, sodium migration led to a severe increase of the series resistance in case of alkali rich samples. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:CIGS solar cells  damp heat  diffusion  illumination  migration  potassium  reliability  sodium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号