首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimentally validated Raman Monte Carlo simulation for a cuboid object to obtain Raman spectroscopic signatures for hidden material
Authors:Vijitha Periyasamy  Sanchita Sil  Gagan Dhal  Freek Ariese  Siva Umapathy  Manojit Pramanik
Abstract:In conventional Raman spectroscopic measurements of liquids or surfaces the preferred geometry for detection of the Raman signal is the backscattering (or reflection) mode. For non‐transparent layered materials, sub‐surface Raman signals have been retrieved using spatially offset Raman spectroscopy (SORS), usually with light collection in the same plane as the point of excitation. However, as a result of multiple scattering in a turbid medium, Raman photons will be emitted in all directions. In this study, Monte Carlo simulations for a three‐dimensional layered sample with finite geometry have been performed to confirm the detectability of Raman signals at all angles and at all sides of the object. We considered a non‐transparent cuboid container (high density polyethylene) with explosive material (ammonium nitrate) inside. The simulation results were validated with experimental Raman intensities. Monte Carlo simulation results reveal that the ratio of sub‐surface to surface signals improves at geometries other than backscattering. In addition, we demonstrate through simulations the effects of the absorption and scattering coefficients of the layers, and that of the diameter of the excitation beam. The advantage of collecting light from all possible 4π angles, over other collection modes, is that this technique is not geometry specific and molecular identification of layers underneath non‐transparent surfaces can be obtained with minimal interference from the surface layer. To what extent all sides of the object will contribute to the total signal will depend on the absorption and scattering coefficients and the physical dimensions. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:Monte Carlo simulation  Raman spectroscopy  photon migration  multiple scattering  explosive detection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号