Abstract: | In this paper the Lorentz transformations (LT) and the standard transformations (ST) of the usual Maxwell equations (ME) with the three-dimensional (3D) vectors of the electric and magnetic fields, E and B, respectively, are examined using both the geometric algebra and tensor formalisms. Different 4D algebraic objects are used to represent the usual observer dependent and the new observer independent electric and magnetic fields. It is found that the ST of the ME differ from their LT and consequently that the ME with the 3D E and B are not covariant upon the LT but upon the ST. The obtained results do not depend on the character of the 4D algebraic objects used to represent the electric and magnetic fields. The Lorentz invariant field equations are presented with 1-vectors E and B, bivectors EHv and BHv and the abstract tensors, the 4-vectors Ea and Ba. All these quantities are defined without reference frames, i.e., as absolute quantities. When some basis has been introduced, they are represented as coordinate-based geometric quantities comprising both components and a basis. It is explicitly shown that this geometric approach agrees with experiments, e.g., the Faraday disk, in all relatively moving inertial frames of reference, which is not the case with the usual approach with the 3D bf E and B and their ST. |