首页 | 本学科首页   官方微博 | 高级检索  
     


Rotational effects in the dissociative adsorption of H2 on the Pt211 stepped surface
Authors:Luppi Marcello  McCormack Drew A  Olsen Roar A  Baerends Evert Jan
Affiliation:Theoretical Chemistry Department, Vrije Universiteit, 1081HV Amsterdam, The Netherlands.
Abstract:Rotational effects in the dissociative adsorption of H2 on the Pt211 stepped surface have been studied using classical trajectory calculations on a six-dimensional, density-functional theory potential-energy surface. Reaction of rotating molecules via an indirect trapping mechanism exhibits an unexpected nonmonotonic dependence on the initial rotational quantum number J. Indirect reaction is first quenched with increasing J but is enhanced again for high J initial states. The quenching is attributed to rotational-to-translational energy transfer, which facilitates escape from the chemisorption wells responsible for molecular trapping. For high J, rotational and translational motions decouple, and the energy transfer is no longer possible, which leads again to trapping. Degeneracy-resolved calculations show that for high initial J, molecules rotating in a "cartwheel" fashion (mJ=0) are more likely to become trapped and react indirectly than "helicoptering" molecules (mJ=J). Experimental confirmation of this finding would lend strong support to the existence of the chemisorption wells that trap molecules prior to reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号