首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Conformational analysis and molecular dynamics simulation of cellobiose and larger cellooligomers
Authors:BJ Hardy  A Sarko
Abstract:The conformational behavior of cellobiose (D -glc-ß(1→4)-D -glc), cellotetraose, and cellooctaose was studied by a combination of energy minimization and molecular dynamics simulations in vacuo at 400 K. These diand oligosaccharide models have considerable flexibility and exhibit a variety of different motions in glycosidic and exocyclic torsions. The glycosidic ?, ψ torsions moved frequently between two local minima on the cellobiose energy surface in the region of known crystal structures. Transitions of the hydroxymethyl side chain were observed between gt,gg, and tg conformations accompanied by changes in intramolecular hydrogen bonding patterns. A reasonable fit to the experimental optical rotation and nuclear magnetic resonance vicinal coupling data of cellobiose in solution required a distribution of its conformations. The oligomers, although generally extended, assumed a more coiled or twisted shape than is observed in the crystalline state of cellulose and exhibited considerable backbone motion due to local ring rotations about the glycosidic bonds. Long-lived transitions to structures having torsion angles 180° from the major minima (ring flips) introduced kinks and bends into the tetramer and octamer. While the glucose rings of the structures remained primarily in the 4C1 conformation, twist and boat structures were also observed in the tetramer and octamer structures. Reducing the simulation temperature to 300 K eliminated some of the transitions seen at 400 K. © 1993 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号