首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Growth rates for the linearized motion of fluid interfaces away from equilibrium
Authors:J Thomas Beale  Thomas Y Hou  John S Lowengrub
Abstract:We consider the motion of a two-dimensional interface separating an inviscid, incompressible, irrotational fluid, influenced by gravity, from a region of zero density. We show that under certain conditions the equations of motion, linearized about a presumed time-dependent solution, are wellposed; that is, linear disturbances have a bounded rate of growth. If surface tension is neglected, the linear equations are well-posed provided the underlying exact motion satisfies a condition on the acceleration of the interface relative to gravity, similar to the criterion formulated by G. I. Taylor. If surface tension is included, the linear equations are well-posed without qualifications, whether the fluid is above or below the interface. An interesting qualitative structure is found for the linear equations. A Lagrangian approach is used, like that of numerical work such as 3], except that the interface is assumed horizontal at infinity. Certain integral equations which occur, involving double layer potentials, are shown to be solvable in the present case. © 1993 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号