首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic study of the nitric oxide oxidation between 288 and 323 K,under pressure,focus on the oxygen influence on the reaction rate constant
Authors:Esther Neyrolles  José Lara Cruz  Georgio Bassil  François Contamine  Pierre Cezac  Philippe Arpentinier
Affiliation:1. Laboratoire de Thermique, Energétique et Procédés-IPRA, Université de Pau & Pays Adour/E2S UPPA, PAU, France;2. Faculty of Engineering, Université de Libano-Canadienne, Aintoura, Kesrouan, Lebanon;3. Air Liquide, Paris Innovation Campus, Direction Scientifique, Jouy-en-Josas Cedex, France
Abstract:The sequestration of carbon dioxide fumes from oxyfuel combustion is used to reduce significantly the carbon dioxide emissions from coal-fired power plants. Impurities like nitric oxide, present in the fumes, can cause technical difficulties during the capture, the treatment, the transport, and the storage steps of the CO2 fumes. The purpose of this study is to better understand the oxidation of nitric oxide under pressure in the presence of carbon dioxide and in the experimental condition of flue gas treatment. This reaction is known to be a third-order reaction, two order in nitric oxide and first order in oxygen. To examine the effect of the temperature, the pressure and the volume fraction of oxygen on the rate constant of oxidation, k1, an autoclave is used. The first experiment studies the influence of the temperature between 288 and 323 K. The results found are in the form of an Arrhenius-type equation: k1 = 810 exp(620/T) and are in agreement with the literature. Carbon dioxide does not seem to have an influence on the rate constant, whereas our experimental measurements indicate an influence of the volume fraction of oxygen. The rate constant decreases when the oxygen volume fraction increases by up to 10%. Then the rate constant remains constant. This observation allows us to conclude that the mechanism involving the mechanism with a dimer of NO as an intermediate is more likely to be the mechanism involved in the nitric oxide oxidation in our experimental conditions: high pressure and ambient temperature. The rate constant k2, k–2, and k3 were also estimated in these conditions.
Keywords:nitric oxide  nitrogen dioxide  oxidation kinetics  oxygen influence  rate constant
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号