首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Global motion analysis of energy-based control for 3-link planar robot with a single actuator at the first joint
Authors:Yannian Liu  Xin Xin
Institution:1.Graduate School of Natural Science and Technology,Okayama University,Okayama,Japan;2.Faculty of Computer Science and Systems Engineering,Okayama Prefectural University,Soja,Japan
Abstract:This paper studies nonlinear control of a 3-link planar robot moving in the vertical plane with only the first joint being actuated while the two other revolute joints are passive (called the APP robot below). A nonlinear energy-based controller is proposed, whose objective is to drive the APP robot into an invariant set where the first link is in the upright position and the total mechanical energy converges to its value at the upright equilibrium point (all three links are in the upright position). By presenting and using a new property of the motion of the APP robot, without any condition on its mechanical parameters, this paper proves that if the control gains are larger than specific lower bounds, then only a measure-zero set of initial conditions converges to three strictly unstable equilibrium points instead of converging to the invariant set. This paper presents numerical results for a physical 3-link planar robot to validate the obtained theoretical results and to demonstrate a switch–and–stabilize maneuver in which the energy-based controller is switched to a linear state feedback controller that stabilizes the APP robot at its upright equilibrium point.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号