首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two π-Conjugated Covalent Organic Frameworks with Long-Term Cyclability at High Current Density for Lithium Ion Battery
Authors:Heng Chen  Yadi Zhang  Chengyang Xu  Mufan Cao  Prof Hui Dou  Prof Xiaogang Zhang
Institution:Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P. R. China
Abstract:Organic lithium ion batteries (LIBs) are considered as one of the next-generation green electrochemical energy storage (EES) devices. However, obtaining both high capacity and long-term cyclability is still the bottleneck of organic electrode materials for LIBs because of weak structural and chemical stability and low conductivity. Covalent organic frameworks (COFs) show potential to overcome these problems owing to its good stability and high capacity. Herein, the synthesis and characterization of two π-conjugated COFs, derived from the Schiff-base reaction of 2,4,6-triaminopyrimidne (TM) respectively with 1,4-phthalaldehyde (PA) and 1,3,5-triformylbenzene (TB) by a mechanochemical process are presented. As anode materials for LIBs, the COFs exhibit favorable electrochemical performance with the highest reversible discharge capacities of up to 401.3 and 379.1 mAh g?1 at a high current density (1 A g?1), respectively, and excellent long-term cyclability with 74.8 and 72.7 % capacity retention after 2000 cycles compared to the initial discharge capacities.
Keywords:conjugation  covalent organic frameworks  high current density  lithium ion battery  long-term cyclability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号