首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Metal Electrode Support on the Catalytic Activity of Fe(oxy)hydroxide for the Oxygen Evolution Reaction in Alkaline Media
Authors:Dr. Lisa J. Enman  Ashlee E. Vise  Dr. Michaela Burke Stevens  Prof. Shannon W. Boettcher
Affiliation:Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon, 97403, United States
Abstract:FeOxHy and Fe-containing Ni/Co oxyhydroxides are the most-active catalysts for the oxygen evolution reaction (OER) in alkaline media. However, the activity of Fe sites appears strongly dependent on the electrode-substrate material and/or the elemental composition of the matrix in which it is embedded. A fundamental understanding of these interactions that modulate the OER activity of FeOxHy is lacking. We report the use of cyclic voltammetry and chronopotentiometry to assess the substrate-dependent activity of FeOxHy on a number of commonly used electrode substrates, including Au, Pt, Pd, Cu, and C. We also evaluate the OER activity and Tafel behavior of these metallic substrates in 1 M KOH aqueous solution with Fe3+ and other electrolyte impurities. We find that the OER activity of FeOxHy varies by substrate in the order Au>Pd≈Pt≈Cu>C. The trend may be caused by differences in the adsorption strength of the Fe oxo ion on the substrate, where a stronger adhesion results in more adsorbed Fe at the interface during steady-state OER and possibly a decreased charge-transfer resistance at the FeOxHy-substrate interface. These results suggest that the local atomic and electronic structure of [FeO6] units play an important role in catalysis of the OER as the activity can be tuned substantially by substrate interactions.
Keywords:electrochemistry  heterogeneous catalysis  iron oxyhydroxide  oxygen evolution  water electrolysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号