首页 | 本学科首页   官方微博 | 高级检索  
     检索      


3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene
Authors:Martin Peng  Esther Mittmann  Lukas Wenger  Prof?Dr Jürgen Hubbuch  Dr Martin K M Engqvist  Prof?Dr Christof M Niemeyer  Dr Kersten S Rabe
Institution:1. Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;2. Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany;3. Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;4. Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden

Abstract:Continuous flow systems for chemical synthesis are becoming a major focus in organic chemistry and there is a growing interest in the integration of biocatalysts due to their high regio- and stereoselectivity. Methods established for 3D bioprinting enable the fast and simple production of agarose-based modules for biocatalytic reactors if thermally stable enzymes are available. We report here on the characterization of four different cofactor-free phenacrylate decarboxylase enzymes suitable for the production of 4-vinylphenol and test their applicability for the encapsulation and direct 3D printing of disk-shaped agarose-based modules that can be used for compartmentalized flow microreactors. Using the most active and stable phenacrylate decarboxylase from Enterobacter spec. in a setup with four parallel reactors and a subsequent palladium(II) acetate-catalysed Heck reaction, 4-hydroxystilbene was synthesized from p-coumaric acid with a total yield of 14.7 % on a milligram scale. We believe that, due to the convenient direct immobilization of any thermostable enzyme and straightforward tuning of the reaction sequence by stacking of modules with different catalytic activities, this simple process will facilitate the establishment and use of cascade reactions and will therefore be of great advantage for many research approaches.
Keywords:3D printing  biocatalysis  enzymes  flow chemistry  hydrogels
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号