首页 | 本学科首页   官方微博 | 高级检索  
     


Colloidally Stable CdS Quantum Dots in Water with Electrostatically Stabilized Weak-Binding,Sulfur-Free Ligands
Authors:Dr. Francesca Arcudi  Dana Emily Westmoreland  Prof. Emily Allyn Weiss
Affiliation:Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL-60208-3113 USA
Abstract:Colloidal quantum dot (QD) photocatalysts have the electrochemical and optical properties to be highly effective for a range of redox reactions. QDs are proven photo-redox catalysts for a variety of reactions in organic solvents but are less prominent for aqueous reactions. Aqueous QD photocatalysts require hydrophilic ligand shells that provide long-term colloidal stability but are not so tight-binding as to prevent catalytic substrates from accessing the QD surface. Common thiolate ligands, which also poison many co-catalysts and undergo photo-oxidative desorption, are therefore often not an option. This paper describes a framework for the design of water-solubilizing ligands that are in dynamic exchange on and off the QD surface, but still provide long-term colloidal stability to CdS QDs. The binding affinity and inter-ligand electrostatic interactions of a bifunctional ligand, aminoethyl phosphonic acid (AEP), are tuned with the pH of the dispersion. The key to colloidal stability is electrostatic stabilization of the monolayer. This work demonstrates a means of mimicking the stabilizing power of a thiolate-bound ligand with a zwitterionic tail group, but without the thiolate binding group.
Keywords:catalysis  ligand design  nanotechnology  quantum dots  water chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号