首页 | 本学科首页   官方微博 | 高级检索  
     


Enzyme-Decorated Covalent Organic Frameworks as Nanoporous Platforms for Heterogeneous Biocatalysis
Authors:Felipe L. Oliveira  Dr. Stefania P. de Souza  Dr. Jonathan Bassut  Prof. Heiddy M. Álvarez  Prof. Yunier Garcia-Basabe  Prof. Rodrigo O. M. Alves de Souza  Prof. Pierre M. Esteves  Prof. Raoni S. B. Gonçalves
Affiliation:1. Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro, RJ, 21941-909 Brazil;2. Biocatalysis and Organic Synthesis Group, Chemistry Institute, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro, RJ, 21941-909 Brazil;3. Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, Av. Transnordestina S/N, Novo Horizonte, 252, Feira de Santana, BA, 44036-900 Brazil;4. Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Av. Tancredo Neves, 6731, Foz do Iguaçu, PR, 85867-970 Brazil
Abstract:Sustainability in chemistry heavily relies on heterogeneous catalysis. Enzymes, the main catalyst for biochemical reactions in nature, are an elegant choice to catalyze reactions due to their high activity and selectivity, although they usually suffer from lack of robustness. To overcome this drawback, enzyme-decorated nanoporous heterogeneous catalysts were developed. Three different approaches for Candida antarctica lipase B (CAL-B) immobilization on a covalent organic framework (PPF-2) were employed: physical adsorption on the surface, covalent attachment of the enzyme in functional groups on the surface and covalent attachment into a linker added post-synthesis. The influence of the immobilization strategy on the enzyme uptake, specific activity, thermal stability, and the possibility of its use through multiple cycles was explored. High specific activities were observed for PPF-2-supported CAL-B in the esterification of oleic acid with ethanol, ranging from 58 to 283 U mg−1, which was 2.6 to 12.7 times greater than the observed for the commercial Novozyme 435.
Keywords:biocatalysis  covalent organic frameworks  enantiomeric resolution  enzymes  porous materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号