首页 | 本学科首页   官方微博 | 高级检索  
     


Reticular Chemistry of Uranyl Phosphonates: Sterically Hindered Phosphonate Ligand Method is Significant for Constructing Zero-Dimensional Secondary Building Units
Authors:Yi Wang  Xiangxiang Wang  Yan Huang  Fan Zhou  Chao Qi  Prof. Tao Zheng  Prof. Jiansheng Li  Prof. Zhifang Chai  Prof. Shuao Wang
Affiliation:1. School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China;2. School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China

School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher, Education Institutions, Soochow University, Jiangsu, 215123 P. R. China;3. School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher, Education Institutions, Soochow University, Jiangsu, 215123 P. R. China

Abstract:Designability is an attractive feature for metal–organic frameworks (MOFs) and essential for reticular chemistry, and many ideas are significantly useful in the carboxylate system. Bi-, tri-, and tetra-topic phosphonate ligands are used to achieve framework structures. However, an efficient method for designing phosphonate MOFs is still on the way, especially for uranyl phosphonates, owing to the complicated coordination modes of the phosphonate group. Uranyl phosphonates prefer layer or pillar-layered structures as the topology extension for uranyl units occurs in the plane perpendicular to the linear uranium-oxo bonds and phosphonate ligands favor the formation of compact structures. Therefore, an approach that can construct three-dimensional (3D) uranyl phosphonate MOFs is desired. In this paper, a sterically hindered phosphonate ligand method (SHPL) is described and is successfully used to achieve 3D framework structures of uranyl phosphonates. Four MOF compounds ([AMIM]2(UO2)(TppmH4) ⋅ H2O ( UPF-101 ), [BMMIM]2(UO2)3(TppmH4)2 ⋅ H2O ( UPF-102 ), [Py14]2(UO2)3(TppmH4)2 ⋅ 3 H2O ( UPF-103 ), and [BMIM](UO2)3(TppmH3)F2 ⋅ 2 H2O ( UPF-104 ); [AMIM]=1-allyl-3-methylimidazolium, [BMMIM]=1-butyl-2,3-dimethylimidazolium, [Py14]=N-butyl-N-methylpyrrolidinium, and [BMIM]=1-butyl-3-methylimidazolium) are obtained by ionothermal synthesis, with zero-dimensional nodes of uranyl phosphonates linked by steric tetra-topic ligands, namely tetrakis[4-(dihyroxyphosphoryl)phenyl]methane (TppmH8), to give 3D framework structures. Characterization by PXRD, UV/Vis, IR, Raman spectroscopy, and thermogravimetry (TG) were also performed.
Keywords:crystal structures  metal–organic frameworks  reticular chemistry  uranyl phosphonate frameworks
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号