首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Isolation of an Organic Solvent-Tolerant Lipolytic Enzyme from Uncultivated Microorganism
Authors:Changhyun Roh  Rolf D Schmid
Institution:1. Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
2. Division of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Shinjeong-dong, Jeongeup-si, Jeolabuk-do, Republic of Korea
Abstract:Although the use of lipases as biocatalysts has frequently been proposed, it is yet scarcely being implemented in industrial processes. This is mainly due to the difficulties associated with the discovery and engineering of new enzymes and the lack of versatile screening methods. In this study, we screened the available strategy from a metagenomic pool for the organic solvent-tolerant lipase with enhanced performance for industrial processes. A novel lipase was identified through functional screening from a metagenomic library of activated sludge in an Escherichia coli system. The gene encoding the lipase from the metagenomic pool, metalip1, was sequenced and cloned by PCR. Metalip1 encoding a polypeptide of 316 amino acids had typical residues essential for lipase such as pentapeptide (GXSXGG) and catalytic triad sequences (Ser160, Asp260, and His291). The deduced amino acid sequence of metalip1 showed high similarity to a putative lipase from Pseudomonas sp. CL-61 (80 %, ABC25547). Metalip1 was expressed in E. coli BL21 (DE3) with a his-tag and purified using a Ni-NTA chelating column and characterized. This enzyme showed high expression level and solubility in the heterologous E. coli host. This enzyme was active over broad organic solvents. Among organic solvents examined, dimethyl formamide was the best organic solvent for metalip1. We showed that function-based strategy is an effective method for fishing out an organic solvent-tolerant lipase from the metagenomic library. Also, it revealed high catalytic turnover rates, which make them a very interesting candidate for industrial application.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号