首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theoretical approach to the photochemical activation of matrix isolated aluminum atoms and their reaction with methane
Authors:Pacheco-Blas M A  Novaro O A  Pacheco-Sánchez J H
Institution:Instituto de Fi?sica, Universidad Nacional Auto?noma de Me?xico, AP 20-364, Mexico 01000 Distrito Federal, Mexico. madelalba@gmail.com
Abstract:The photochemical activation of Al atoms in cryogenic matrices to induce their reaction with methane has been experimentally studied before. Here, a theoretical study of the nonadiabatic transition probabilities for the ground ((2)P:3s(2)3p(1)) and the lowest excited states ((2)S:3s(2)4s(1) and (2)D:3s(2)3d(1)) of an aluminum atom interacting with a methane molecule (CH(4)) was carried out through ab initio Hartree-Fock self-consistent field calculations. This was followed by a multiconfigurational study of the correlation energy obtained by extensive variational and perturbational configuration interaction analyses using the CIPSI program. The (2)D state is readily inserted into a C-H bond, this being a prelude to a sequence of avoided crossings with the initially repulsive (to CH(4)) lower lying states (2)P and (2)S. We then use a direct extension of the Landau-Zener theory to obtain transition probabilities at each avoided crossing, allowing the formation of an HAlCH(3) intermediate that eventually leads to the final pair of products H+AlCH(3) and HAl+CH(3).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号