首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Full-dimensional quantum dynamics of vibrationally highly excited NHD2
Authors:Marquardt Roberto  Sanrey Michael  Gatti Fabien  Le Quéré Frédéric
Institution:Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS/UdS, Universite? de Strasbourg, 4, rue Blaise Pascal, CS90032, 67801 Strasbourg Cedex, France. roberto.marquardt@unistra.fr
Abstract:We report on full-dimensional vibrational quantum dynamics of the highly excited ammonia isotopologue NHD(2) using a newly developed potential energy surface and the MCTDH program package. The calculations allow to realistically simulate an infrared laser induced stereomutation reaction at the pyramidal nitrogen atom in the femtosecond time domain. Our results allow for a thorough qualitative and quantitative understanding of infrared photoinduced stereomutation kinetics, the underlying quantum dynamics, and the reaction mechanisms. Comparison is made with a previous, reduced dimensionality study of the same reaction R. Marquardt, M. Quack, I. Thanopulos, and D. Luckhaus, J. Chem. Phys. 118, 643 (2003)], and it is shown that slight variances of reduced spaces lead to significantly different kinetics. Because the quantum dynamics depends subtly on variances of reduced spaces, reduced dimensionality treatments are not reliable even for qualitative predictions of the stereomutation kinetics. The first direct comparison between the Multiconfigurational Time Dependent Hartree M. H. Beck, A. Ja?ckle, G. A. Worth et al., Phys. Rep. 324, 1 (2000)] and Unimolecular Reactions Induced by Monochromatic Infrared Radiation M. Quack and E. Sutcliffe, QCPE Bulletin 6, 98 (1986)] program packages on a specific, four dimensional quantum dynamical problem allows for their full validation in the present work.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号