首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gas-phase ion/ion reactions of transition metal complex cations with multiply charged oligodeoxynucleotide anions
Authors:Christopher K Barlow  Brittany D M Hodges  Yu Xia  Richard A J O’Hair  Scott A McLuckey
Institution:School of Chemistry, University of Melbourne, Melbourne, Australia.
Abstract:Multiply deprotonated hexadeoxyadenylate anions, (A6-nH)(n-), where n = 3-5, have been subjected to reaction with a range of divalent transition-metal complex cations in the gas phase. The cations studied included the bis- and tris-1,10-phenanthroline complexes of CuII, FeII, and CoII, as well as the tris-1,10-phenanthroline complex of RuII. In addition, the hexadeoxyadenylate anions were subjected to reaction with the singly charged FeIII and CoIIIN,N'-ethylenebis(salicylideneiminato) complexes. The major competing reaction channels are electron-transfer from the oligodeoxynucleotide anion to the cation, the formation of a complex between the anion and cation, and the incorporation of the transition-metal into the oligodeoxynucleotide. The latter process proceeds via the anion/cation complex and involves displacement of the ligand(s) in the transition-metal complex by the oligodeoxynucleotide. Competition between the various reaction channels is governed by the identity of the transition-metal cation, the coordination environment of the metal complex, and the oligodeoxynucleotide charge state. In the case of the divalent metal phenanthroline complexes, competition between electron-transfer and metal ion incorporation is particularly sensitive to the coordination number of the reagent metal complexes. Both electron-transfer and metal ion incorporation occur to significant extents with the bis-phenanthroline ions, whereas the tris-phenanthroline ions react predominantly by metal ion incorporation. To our knowledge this work reports the first observations of the gas-phase incorporation of multivalent transition-metal cations into oligodeoxynucleotide anions and represents a means for the selective incorporation of transition-metal counter-ions into gaseous oligodeoxynucleotides.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号