首页 | 本学科首页   官方微博 | 高级检索  
     


New bithiazole-based sensitizers for efficient and stable dye-sensitized solar cells
Authors:He Jinxiang  Guo Fuling  Li Xin  Wu Wenjun  Yang Jiabao  Hua Jianli
Affiliation:Key Laboratory for Advanced Materials, Institute of Fine Chemicals and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
Abstract:A series of new push-pull organic dyes (BT-I-VI), incorporating electron-withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π?spacer have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). In comparison with the model compound T1, these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π?spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π-π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51?%, in which BT-I-based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 81.1?%, a short-circuit photocurrent density (J(sc)) of 15.69?mA?cm(-2), an open-circuit photovoltage (V(oc)) of 778?mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51?% under standard global AM 1.5 solar light conditions. Most importantly, long-term stability of the BT-I-III-based DSSCs with ionic-liquid electrolytes under 1000?h of light soaking was demonstrated and BT-II with a furan moiety exhibited better photovoltaic performance of up to 5.75?% power conversion efficiency.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号