首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hamiltonian matrix and reduced density matrix construction with nonlinear wave functions
Authors:Shepard Ron
Institution:Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA. shepard@tcg.anl.gov
Abstract:An efficient procedure to compute Hamiltonian matrix elements and reduced one- and two-particle density matrices for electronic wave functions using a new graphical-based nonlinear expansion form is presented. This method is based on spin eigenfunctions using the graphical unitary group approach (GUGA), and the wave function is expanded in a basis of product functions (each of which is equivalent to some linear combination of all of the configuration state functions), allowing application to closed- and open-shell systems and to ground and excited electronic states. In general, the effort required to construct an individual Hamiltonian matrix element between two product basis functions H(MN) = M|H|N scales as theta (beta n4) for a wave function expanded in n molecular orbitals. The prefactor beta itself scales between N0 and N2, for N electrons, depending on the complexity of the underlying Shavitt graph. Timings with our initial implementation of this method are very promising. Wave function expansions that are orders of magnitude larger than can be treated with traditional CI methods require only modest effort with our new method.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号