首页 | 本学科首页   官方微博 | 高级检索  
     


Energy spectrum of the graphene-based Fibonacci superlattice
Authors:A. N. Korol  V. N. Isai
Affiliation:1. National University of Food Technologies, ul. Volodymyrska 68, Kyiv, 01601, Ukraine
2. Laboratory on Quantum Theory in Link?ping, International Society for Independent Research (ISIR), Box 8017, Link?ping, 580 80, Sweden
Abstract:Energy spectra of the graphene-based Fibonacci superlattice (SL) in the presence of the band gap in graphene have been investigated. The lattice consists of rectangular barriers, which are arranged along axis Ox. The quasi-periodic modulation is performed due to the difference in the values of the mass term of the Hamiltonian in various SL elements. It is shown that effective splitting of allowed bands (and thereby the formation of a series of gaps) under the effect of the quasi-periodic factor is implemented with both oblique and normal incidence of the electron wave on the SL surface. The energy spectra have a clearly pronounced periodic character over the entire energy scale. The bands split in separate fragments of the spectrum (conventionally periods) according to the Fibonacci inflation rule in each new generation. The band gap associated with a new Dirac point is formed in all Fibonacci generations similarly to the periodic graphene-based SLs. The location of the Dirac point is independent of the SL period; it is very sensitive to the potential barrier height and to the width ratio between the quantum well and the barrier and depends weakly on the mass term in the Hamiltonian. The dependence of the spectra on the incidence angle of the electron wave is insignificant.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号