首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A mechanistic investigation of carbon-hydrogen bond stannylation: synthesis and characterization of nickel catalysts
Authors:Johnson Samuel A  Doster Meghan E  Matthews Jacob  Shoshani Manar  Thibodeau Michelle  Labadie Amanda  Hatnean Jillian A
Institution:Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada. sjohnson@uwindsor.ca
Abstract:The complex ((i)Pr(3)P)Ni(η(2)-Bu(3)SnCH=CH(2))(2) (1a) was characterized by NMR spectroscopy and was identified as the active species for catalytic C-H bond stannylation of partially fluorinated aromatics, for example in the reaction between pentafluorobenzene and Bu(3)SnCH=CH(2), which generates C(6)F(5)SnBu(3) and ethylene. The crystalline complex ((i)Pr(3)P)Ni(η(2)-Ph(3)SnCH=CH(2))(2) (1b) provides a more easily handled analogue, and is also capable of catalytic stannylation with added Ph(3)SnCH=CH(2) and C(6)F(5)H. Mechanistic studies on 1b show that the catalytically active species remains mononuclear. The rate of catalytic stannylation is proportional to C(6)F(5)H] and inversely proportional to Ph(3)SnCH=CH(2)]. This is consistent with a mechanism where reversible Ph(3)SnCH=CH(2) dissociation provides ((i)Pr(3)P)Ni(η(2)-Ph(3)SnCH=CH(2)), followed by a rate-determining reaction with C(6)F(5)H to generate the stannylation products. Kinetic competition reactions between the fluorinated aromatics pentafluorobenzene, 1,2,4,5-tetrafluorobenzene, 1,2,3,5-tetrafluorobenzene, 1,2,4-trifluorobenzene, 1,3,5-trifluorobenzene and 1,3-difluorobenzene all suggest significant Ni-aryl bond formation in the rate-determining step under catalytic conditions. Labelling studies are consistent with an insertion of the hydrogen of the arene into the vinyl group, followed by β-elimination or β-abstraction of the SnPh(3) moiety.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号