首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solid-state ligand-driven light-induced spin change at ambient temperatures in bis(dipyrazolylstyrylpyridine)iron(II) complexes
Authors:Takahashi Kazuhiro  Hasegawa Yuta  Sakamoto Ryota  Nishikawa Michihiro  Kume Shoko  Nishibori Eiji  Nishihara Hiroshi
Institution:Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan.
Abstract:We previously reported that an Fe(II) complex ligated by two (Z)-2,6-di(1H-pyrazol-1-yl)-4-styrylpyridine ligands (Z-H) presented a solid state ligand-driven light-induced spin change (LD-LISC) upon one-way Z-to-E photoisomerization, although modulation of the magnetism was trivial at ambient temperatures (Chem. Commun.2011, 47, 6846). Here, we report the synthesis of new derivatives of Z-H, Z-CN and Z-NO(2), in which electron-withdrawing cyano and nitro substituents are introduced at the 4-position of the styryl group to attain a more profound photomagnetism at ambient temperatures. Z-CN and Z-NO(2) undergo quantitative one-way Z-to-E photochromism upon excitation of the charge transfer band both in acetonitrile and in the solid state, similar to the behavior observed for Z-H. In solution, these substituents stabilized the low-spin (LS) states of Z-CN and Z-NO(2), and the behavior was quantitatively analyzed according to the Evans equation. The photomagnetic properties in the solid state, on the other hand, cannot be explained in terms of the substituent effect alone. Z-CN displayed photomagnetic properties almost identical to those of Z-H. Z-CN preferred the high-spin (HS) state at all temperatures tested, whereas photoirradiated Z-CN yielded a lower χ(M)T at ambient temperatures. The behavior of Z-NO(2) was counterintuitive, and the material displayed surprising photomagnetic properties in the solid state. Z-NO(2) occupied the LS state at low temperatures and underwent thermal spin crossover (SCO) with a T(1/2) of about 270 K. The photoirradiated Z-NO(2) displayed a higher value of χ(M)T and the modulation of χ(M)T exceeded that of Z-H or Z-CN. Z-NO(2)·acetone, in which acetone molecules were incorporated into the crystal lattice, further stabilized the LS state (T(1/2) > 300 K), thereby promoting large modulations of the χ(M)T values (87% at 273 K and 64% at 300 K) upon Z-to-E photoisomerization. Single crystal X-ray structure analysis revealed that structural factors played a vital role in the photomagnetic properties in the solid state. Z-H and Z-CN favored intermolecular π-π stacking among the ligand molecules. The coordination sphere around the Fe(II) nucleus was distorted, which stabilized the HS state. In contrast, Z-NO(2)·acetone was liberated from such intermolecular π-π stacking and coordination distortion, resulting in the stabilization of the LS state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号