首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of oxygen on the formation and decay of stilbene radical cation during the resonant two-photon ionization
Authors:Hara Michihiro  Samori Shingo  Xichen Cai  Fujitsuka Mamoru  Majima Tetsuro
Affiliation:The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
Abstract:Formation and decay of radical cations of trans-stilbene and p-substituted trans-stilbenes (S.+) during the resonant two-photon ionization (TPI) of S in acetonitrile in the presence and absence of O(2) have been studied with laser flash photolysis using a XeCl excimer laser (308 nm, fwhm 25 ns). The transient absorption spectra of S.+ were observed with a peak around 470-490 nm. The formation quantum yield of S.+ (0.06-0.29) increased with decreasing oxidation potential (E(ox)) and increasing fluorescence lifetime (tau(f)) of S, except for trans-4-methoxystilbene which has the lowest E(ox) and longer tau(f) among S. The considerable low yield and fast decay in a few tens of nanoseconds time scale were observed for trans-4-methoxystilbene.+ in the presence of O(2), but not for other S.+ . It is suggested that formation of the ground-state complex between trans-4-methoxystilbene and O(2) and the distonic character of trans-4-methoxystilbene.+ with separation and localization of the positive charge on the oxygen of the p-methoxyl group and an unpaired electron on the beta-olefinic carbon are responsible for the fast reaction of trans-4-methoxystilbene.+ with O(2) or superoxide anion, leading to the considerable low yield and fast decay of trans-4-methoxystilbene.+ . The mechanism based on the transient absorption measurement of S.+ during the TPI is consistent with the relatively high oxidation efficiency of trans-4-methoxystilbene among S based on the product analysis during the photoinduced electron transfer in the presence of a photosensitizer such as 9,10-dicyanoanthracene and O(2) in acetonitrile.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号