首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic Structures of 5d Transition Metal Monoxides by Density Functional Theory
Authors:C Yao  W Guan  P Song  Z M Su  J D Feng  L K Yan  Z J Wu
Institution:(1) Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China;(2) Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
Abstract:Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the diatomic 5d transition metal (except La) monoxides and their positively and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, MPW1PW91, PBE1PBE, and SVWN. Our calculation shows that for each individual species, the calculated properties are quite sensitive to the method used. Compared with hybrid density functional method B3PW91 (B3P86), pure density functional method BPW91 (BP86) gives longer bond distance (lower vibrational frequency) from HfO to PtO for neutral species, HfO+ to IrO+ for cationic species, and HfO to AuO for anionic species. While for B3LYP and BLYP, the trend was observed for cationic species from HfO+ to IrO+ and anionic species from HfO to AuO (except TaO), but not for neutrals. Pure density function methods BLYP, BPW91, and BP86 give larger dissociation energy compared with hybrid density functional methods B3LYP, B3PW91, and B3P86. SVWN in most cases gives the smallest bond distance, while BLYP gives the largest value. MPW1PW91 and PBE1PBE show the same performance in predicting the spectroscopic constants. In addition, useful empirical criteria that one has obtained the ground states of a species and its ions are the spin multiplicities of a neutral and its single charged ions which differs by ±1.
Keywords:5d metal monoxide  Density functional theory  Spectroscopic constants  Ionization potential  Electron affinity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号