首页 | 本学科首页   官方微博 | 高级检索  
     


A Sampling Theory for Compact Sets in Euclidean Space
Authors:Frédéric Chazal  David Cohen-Steiner  André Lieutier
Affiliation:(1) INRIA Futurs, 2-4 rue Jacques Monod, 91893 Orsay Cedex, France;(2) INRIA Sophia-Antipolis, 2004, route des lucioles, 06902 Sophia-Antipolis Cedex, France;(3) Dassault Systèmes and LMC/IMAG, Grenoble, France
Abstract:We introduce a parameterized notion of feature size that interpolates between the minimum of the local feature size and the recently introduced weak feature size. Based on this notion of feature size, we propose sampling conditions that apply to noisy samplings of general compact sets in euclidean space. These conditions are sufficient to ensure the topological correctness of a reconstruction given by an offset of the sampling. Our approach also yields new stability results for medial axes, critical points, and critical values of distance functions. The authors were partially supported by DARPA under grant HR0011-05-1-0007 and by ANR under grant “Topologie, Géométrie Différentielle et Algorithmes.”
Keywords:Distance function  Sampling  Surface and manifold reconstruction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号